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1 Introduction
Static program analysis is seeing increasingly widespread adoption, with applications
both in bug-finding and verification. However, many of the tweaks, implementation
hacks, and optimizations applied in practice to enhance usability and scalability are ap-
plied in an ad hoc manner by analysis designers and accompanied by informal arguments
towards correctness, soundness, and termination.
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Many analysis designs are based upon the theory of abstract interpretation [7], in
which an over-approximation of a program’s semantics is found by computing a fixed-
point over abstractions of the program’s concrete values, semantics, and syntax. There
are many advantages to this technique, notably:

• Modularity: The theory of abstract interpretation is parametric in these abstrac-
tions, thus modularizing the design and implementation of program analyses into
a series of smaller and more tractable components that can be reused in various
combinations. Most commonly, a single fixed-point solver engine is instantiated
with many different abstract domains to solve a wide range of analysis problems.

• Metatheory: Provided that its components satisfy certain well-understood prop-
erties, an abstract interpreter is guaranteed to terminate with a sound result. This
has the much-vaunted corollary that analysis results are free of false negatives.

These desirable properties depend on the analysis’ global fixed-point, thereby restrict-
ing analysis designers to what we call “black-box” analyses: those that hold abstractions
constant, take a program as input, and some time later output some facts about that
program. However, many modern program analysis problems are incompatible with
the restrictions of black-box analysis, so various domain-specific techniques have been
developed and applied in practice.
In an IDE, for example, an analyzer must recompute results on the fly as the program

is edited by a user, so incremental analyses (e.g. [2, 9, 22]) that reuse partially computed
results and avoid unnecessary re-computation dramatically outperforms a batch analysis
that starts anew whenever the program changes.
Analysis results are often only needed at certain locations specified by a client program

or human user, in which case a black-box analysis that computes a global fixed-point is
wasteful. To that end, demand-driven analyses (e.g. [21, 10, 23]) respond to extrinsic
queries for specific analysis facts while performing only the minimal amount of analysis
computation required.
In some cases, the degree of precision required can vary significantly within a program.

Numerous refinement-based analyses have been developed to address this problem, either
by applying different abstractions to improve precision (e.g. [16, 1]) or by incorporating
information from some oracle (e.g. [25, 5, 11]).
A primary motivation for such non-standard analysis designs is speed: whole-program

batch1 analysis is expensive, and structural changes to analysis architecture are required
to deliver results to developers within reasonable timeframes.
This proposal tackles the problem of performing abstract interpretation in real-time,

delivering analysis results to developers where and when they are needed in a manner that
scales, generalizes to arbitrary abstract domains, and is provably sound and terminating.

1i.e. neither incremental nor demand-driven
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1.1 Challenges and Related Work
The key challenge addressed is that efficient incremental and demand-driven analysis
require fine-grained tracking of dependencies and caching of intermediate analysis re-
sults, but abstract interpretation fixed-point computations induce a complex, cyclic,
and unbounded dependency structure.
This unboundedness results from fixed-point computations in infinite-height abstract

domains, for which a sequence of widening operations are applied to guarantee termi-
nation in some unbounded amount of time, as described by Cousot and Cousot [7] and
implemented for example by the chaotic iteration technique of Bourdoncle [6].
As a result, many existing approaches to incremental dataflow analysis (e.g. [2, 9])

and demand-driven dataflow analysis(e.g. [21, 10, 23]) have avoided fully-general abstract
interpretation problems in favor of systems such as IFDS/IDE where the domain is
assumed to be of finite height. This allows for very efficient incremental or demand-driven
analysis, but rules out a large number of important abstract interpretation problems,
including the vast majority of numerical (intervals, octagons, polyhedra, etc.) and shape
domains. Furthermore, all such research of which I am aware has focused on either
incremental or demand-driven analysis.
Some Datalog-based analysis frameworks are capable of both incremental and demand-

driven analysis computations [27, 26]. However, like the aforementioned dataflow anal-
yses, the logic programming DSL restricts analysis expressivity and rules out general-
purpose abstract interpreters.

1.2 Proposal
Just as a classical batch abstract interpretation engine lifts an abstract domain to a
whole-program batch analysis, my aim is to define an abstract interpretation engine
capable of computing analysis results in response to arbitrary sequences of program
edits and queries quickly enough to support interactive use.
In doing so, I will test the following hypotheses :

Hypothesis 1: The combination of incremental and demand-driven analysis is neces-
sary in order to achieve interactive speeds for generic abstract interpretation problems.

Technique Infinite domains Incremental Demand-Driven
with widening

Classic Abstract Interpretation [7, 6] XXX 7 7

Incremental Dataflow [2, 9, 22] 7 XXX 7

Demand-Driven Dataflow [21, 10, 23] 7 7 XXX
Datalog-Based Analysis [27, 26] 7 XXX XXX

Proposal XXX XXX XXX

Table 1: Feature comparison of existing analysis techniques and this proposal.
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Incrementality and demand are generally thought of and studied as orthogonal: incre-
mental analyses exhaustively analyze a program as edits are issued, while demand-driven
analyses respond to queries against a fixed program.
However, the two problems are dual: an incremental analysis discards only those

analysis results that depend upon an edit, while a demand-driven analysis computes
only those analysis results depended upon by a query. Thus, in the case when an edit
has many dependents or a query has many dependencies, incremental-only or demand-
driven-only analysis costs approach batch analysis costs.
By combining the two techniques, an analysis engine can mitigate this worst-case

behavior and perform the minimal amount of analysis work to soundly handle some
given queries and edits.

Hypothesis 2: Formal guarantees of termination, soundness, and from-scratch con-
sistency for interactive analysis can be provided without restricting abstract domain
expressivity.

One key advantage of abstract interpretation is its generality and expressivity: because
abstract domains need only satisfy some high-level algebraic properties, complex domains
have been developed to perform a wide range of analyses.
However, existing techniques (e.g. [23, 2]) for incremental and demand-driven analysis

place restrictions on the abstract domains – most commonly, that they must be finite
or at least of finite height – in order to provide soundness and termination guarantees.
This precludes their use for many important analysis problems, including for example
interval and shape analysis.
In this thesis, I hope to confirm this hypothesis by developing a formalism and en-

gineering a prototype that combine the desirable metatheoretic properties of classical
abstract interpretation with an efficient interactive interface.
Although it may seem esoteric, this has significant practical import since much effort

has been devoted to the engineering of abstract domains (e.g. [17, 24]). An interactive
engine that shares the standard domain interface and assumptions of classical engines
would enable the use of such domains in incremental and/or demand-driven settings.

Hypothesis 3: Graph-based techniques for incremental and demand-driven analysis
naturally support extensions for refinement-based analysis.

As I will describe throughout this proposal, the crux of my technique for incremental
and demand-driven abstract interpretation is an explicit graph-based representation of
partial analysis computations. In this representation, intermediate analysis results and
dataflow relationships can be accessed and manipulated effectively as first-class data
structures.
The myriad forms of refinement that have been studied in the program analysis lit-

erature can thus be represented as extensions to the analysis graph – for example, in-
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function append(p: List, q: List): List {
`0 if (p == null) {
`1 return q; }
`2 var r: List = p;
`3 while (r.next != null) {
`4 r = r.next; }
`5 r.next = q;
`6 return p;

`ret }
`ret

`0

`2

`3

`5

`6

`ret

`1

`4

assume
p == null;

assume p != null;

r = p;

assume
r.next == null;

r.next = q;

ret = p;

assume
r.next != null;

r = r.next;

ret = q;

Figure 1: A procedure to append two linked lists in a Java-like imperative language, and
an equivalent control-flow graph representation. The labels `i mark program locations,
and loops and conditionals are transformed into unstructured control flow with assume

statements.

corporating dynamic or extrinsically-provided information (as in [25, 5, 11]) or adjust-
ing abstractions at analysis time to apply greater precision only where needed (as in
[16, 13, 20]).

In the remainder of this proposal, I will describe my graph-based technique for interac-
tive abstract interpretation through a motivating example (Section 2), provide details on
the underlying theoretical work (Section 3) and prototype implementation (Section 4),
and lay out a plan for future work and completion of my dissertation(Section 5).

2 Overview
The core of my approach is a graph-based representation of abstract interpretation com-
putations, generic in both an underlying programming language and an abstract do-
main. In this section, I will demonstrate how the encoding supports incremental and
demand-driven computations by example. For concreteness and clarity, I fix a Java-like
imperative language and a separation logic-based shape analysis domain.
Consider the simple imperative program given in Fig. 1, which appends two linked

lists. Given null-terminated and acyclic input lists p and q, append must return a simi-
larly well-formed list and not dereference null in order to be correct. These properties
can be verified using an abstract interpretation-based shape analysis[3, 8, 18], tracking
separation logic facts like lseg(p,null) to represent well-formedness of list p.

Such an analysis, though it may be computed quickly for this small example, can
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assume
p == null;

`0 · `1

ϕ0

`0
assume

p != null;

`0 · `2

`1
r = p;

`2 · `3`2

ret = q;
`1 · `ret

Elided encoding of the
`3-to-`4-to-`3 loop body

1 · `ret

assume
r.next == null;

`3 · `5

`5

r.next = q;
`5 · `6

`6

ret = p;
`6 · `ret

2 · `ret

`ret

J·K]

J·K]

J·K]

J·K]

J·K]

J·K]

J·K]

t

Figure 2: A demanded abstract interpretation graph (DAIG) for the program given in
Fig. 1 before any queries are issued. The elided loop encoding is shown in Fig. 5.

become prohibitively expensive for larger programs and more complex abstract domains.
My goal is to compute analysis results in response to queries and program edits with
sufficiently low latency to enable real-time interactive use, even as programs and domains
grow in complexity.

2.1 Reifying Abstract Interpretations
The imperative append procedure may equivalently be represented as a control-flow graph
(CFG) as shown in Fig. 1, with vertices for program locations and edges labelled by
atomic program statements. A classical abstract interpreter analyzes such a program
by starting with some initial abstract state and applying an abstract transfer function
J·K] to interpret statements, a join operator t at nodes with multiple predecessors, and
a widen operator ∇ at cycles as needed until a fixed point is reached.

The demanded abstract interpretation graph (DAIG) shown in Fig. 2 reifies the com-
putational structure of such an abstract interpretation over the Fig. 1 CFG. Its vertices
are uniquely-named mutable reference cells containing program syntax or intermediate
abstract states, and its edges fully specify the computations of an abstract interpreta-
tion. Names identify values for reuse across edits and queries and hence must uniquely
identify the inputs and intermediate results of the abstract interpretation. In Fig. 2 and
throughout this proposal, an underlined symbol denotes the name derived from that
symbol: its hash, essentially.
To encode abstract interpretation computations, DAIG edges are labelled by a symbol

6



for an abstract interpretation function and connect cells storing the function inputs to
the cell storing the output, capturing the dependency structure of the computation in
an expected manner.2 For example, the computation of the abstract transfer function
over the CFG edge `0 → `1 is encoded in Fig. 2 as a DAIG edge with input cells `0 and
`0 ·`1 (respectively containing the fixed-point state at `0 and the corresponding statement
s0 : assume(p == null)), labelled by the abstract transfer function symbol J·K].

Note that cells containing program syntax (shaded in Fig. 2) and analysis state (un-
shaded in Fig. 2) are treated uniformly in the DAIG semantics; I differentiate them
visually only for clarity. Statement edits and abstract state updates both correspond
simply to edits to the relevant mutable reference cells.

2.2 Demand-Driven and Incremental Analysis

assume
p == null;

`0 · `1

ϕ0 : lseg(q, null) ∗
lseg(p, null)

`0

lseg(q, null)
∧ p = null

`1
ret = q;

`1 · `ret

lseg(ret, null)
∧ p = null

1 · `ret

J·K]

J·K]

Figure 3: Demand-driven query

In this section, I will show by example how the
DAIG encoding naturally supports both demand-
driven and incremental analysis. I will use the
aforementioned shape-analysis domain: a separation
logic-based domain with a “list segment” primitive
lseg(x, y) that abstracts the heaplet containing a list
segment from x to y.3 This domain is of infinite
height, absent a best abstraction function, and with
complex widening operators, and is therefore incom-
patible with previous frameworks for demand-driven
and/or incremental analysis that require finite (or
finite-height) domains.

Fig. 3 shows the result (on the affected region only)
of evaluating a query on the DAIG given in Fig. 2.
Suppose that a client issues a demand query for the abstract state after the return q;

statement on line `1 of the example program; this is the intermediate abstract state
named 1 · `ret above. Since the 1 · `ret cell has predecessors `1 · `ret and `1, we issue
requests for the values of those cells.
Cell `1 is empty, but depends on `0 · `1 and `0, so more requests are issued. Both

of those cells hold values, so we can compute and store the value of `1. Now, having
satisfied its dependencies, we can compute the value of 1 · `ret.
Note that DAIGs are always acyclic, so this recursive traversal is well-founded.
Crucially, these results are now memoized for future reuse; a subsequent query for `ret,

for example, will memo match on 1 · `ret and only need to compute 2 · `ret and its de-
pendencies from scratch. This fine-grained reuse of intermediate abstract interpretation
results is a key feature of the DAIG encoding for demand-driven analysis.
To handle developer edits to code, DAIGs are also naturally incremental, efficiently

recomputing and reusing analysis results across multiple program versions, following the

2More precisely, DAIGs have hyper-edges, since they connect multiple sources (function inputs) to one
destination (function output).

3That is, a sequence of iterated next pointer dereferences from x to y.
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incremental computation with names approach [14].

ϕ

`1
print("p
is null");

`1 · `7

`7

ϕ′

1 · `ret 2 · `ret

ϕ′′
`ret

ret = p;
`7 · `ret

...

...

J·K]

J·K]

t

Figure 4: Incremental edit

Consider for example a program edit which adds
a logging statement print("p is null") just before
the return at `1 in Fig. 1.
Intuitively, program behaviors are unchanged at

those locations unreachable from the added state-
ment, so an incremental analysis should only need
to re-analyze the sub-DAIG reachable from the new
statement.
Fig. 4 illustrates this program edit’s effect on the

DAIG. The green nodes correspond to the added
statement cell `1 · `7 and its corresponding abstract
state cell `7.Nodes forward-reachable from the green
nodes — those marked in red — are invalidated
(a.k.a. “dirtied”) by our incremental computation
engine. In particular, cells `1 · `ret and `ret containing
abstract states ϕ′ and ϕ′′, respectively, are dirtied.
Crucially, while nodes are dirtied eagerly, they are recomputed from up-to-date inputs

lazily, only when demanded. That is, the DAIG encoding allows our analysis to avoid
constant recomputation of an analysis as a program is edited, instead computing results
on demand while soundly keeping track of which intermediate results — possibly from
a previous program version — are available for reuse. This interplay between eager
invalidation and lazy recomputation is key to the efficacy of demanded computation
graph-based incremental computation [15], maximizing the sound reuse of intermediate
results while minimizing unnecessary computation of unneeded results.
For example, assuming that `1 and 2 ·`ret were both computed before the edit, a query

for `ret must execute only two transfers and one join: the red and green edges of Fig. 4.
This represents a significant savings over recomputing the entire analysis — including
the loop fixed point — as would be necessary without incremental analysis.

2.3 Dependency Cycles
Encoding program structure and analysis data-flow into a dependency graph is relatively
straightforward when the control-flow graph is acyclic. However, when handling loops
or recursion, like lines `3 and `4 in Fig. 1, an abstract interpreter’s fixed-point com-
putation is inherently cyclic. Properly handling these cyclic control-flow and data-flow
dependency structures is the crux of effective demand-driven and incremental abstract
interpretation.
For instance, introducing cyclic dependencies in the DAIG yields an unclear evalu-

ation semantics. We can instead enrich the demand-driven query evaluation and the
incremental edit semantics to dynamically evolve DAIGs such that each edit/query pre-
serves the DAIG acyclicity invariant. To do so, I use a distinguished edge label (fix) to
indicate a dependency on the fixed-point of a given region of the DAIG, which is then
dynamically unrolled on-demand by query evaluation and rolled by incremental edits.
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`3
(0)

assume
r.next != null;

`3 · `4

r = r.next;
`4 · `3 `4

(0) `3
(0)· `3

(1)

`3
(1)

`4
(1) `3

(1)· `3
(2)

`3
(2) `3

...

...
J·K]

J·K]

∇

J·K]

J·K]

∇
fix

fix

Figure 5: DAIG for the `3-to-`4-to-`3 loop of Section 2 after one unrolling of the abstract
interpretation’s fixed point computation, with the newly-unrolled region shown in red.
Parenthesized superscripts on names uniquely identify successive abstract iterates at each
location in the loop, and products of such names are pre-widen intermediate values.

This unrolling procedure operates at the semantic level of the abstract interpreta-
tion rather than the syntactic level of the control-flow graph and proceeds one abstract
iteration at a time until a fixed point is reached, preserving acyclicity at each step.
Termination is guaranteed by leveraging the standard argument of abstract interpreta-
tion metatheory: the sequence of abstract iterates converges because it is produced by
widening a monotonically increasing sequence of abstract states, so the unrolling occurs
only finitely — albeit unboundedly — many times.
Since the acyclic DAIG invariant is always preserved, invalidating on incremental

edits still only requires eager dirtying forwards in the DAIG, with some special but
straightforward semantics for fixed-points designed to maximize reuse.

3 Demanded Abstract Interpretation Graphs
In this section, I summarize the formalization of demanded abstract interpretation
graphs (DAIGs) that underpins my approach to interactive abstract interpretation.

3.1 Syntax
As explained informally in the overview, a DAIG reifies the computational structure of
an abstract interpretation fixed-point computation as an explicit graph structure. It is
parametric in both a programming language and an underlying abstract interpreter:

- Programs under analysis are given as control-flow graphs, edge-labelled by an un-
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specified statement language and interpreted by a denotational concrete semantics.

statements s ∈ Stmt
locations ` ∈ Loc

control-flow edges e ∈ Edge ::= `−-[s]�`′
programs 〈L,E, `0〉 : P(Loc)× P(Edge)× Loc

concrete states σ ∈ Σ (with initial state σ0)
concrete semantics J·K : Stmt → Σ→ Σ⊥

- Abstract interpreters are tuples composed of
- An abstract domain Σ] (elements of which are referred to as abstract states)
which forms a semi-lattice under

- a partial order v ∈ P(Σ] × Σ]) with a bottom ⊥ ∈ Σ]

- a least upper bound (a.k.a. join) t : Σ] → Σ] → Σ]

- An initial abstract state ϕ0 ∈ Σ]

- An abstract semantics J·K] : Stmt → Σ] → Σ] that interprets program statements
as monotone functions over abstract states.

- A widening operator ∇ : Σ] → Σ] → Σ] that is an upper bound operator
(i.e., (ϕ t ϕ′) v (ϕ∇ϕ′) for all ϕ,ϕ′) and enforces convergence (i.e., for all
increasing sequences of abstract states ϕ0 v ϕ1 v ϕ2 v · · · , the sequence
ϕ0, ϕ0∇ϕ1, (ϕ0∇ϕ1)∇ϕ2, . . . converges).

Given these underlying structures, demanded abstract interpretation graphs D are
given by the following grammar:

functions f ::= J·K] | t | ∇ | fix
values v ::= s | ϕ
names n ∈ Nm ::= ` | f | i | v | n1 · n2 | n(i)

types τ ∈ {Stmt, Σ]}
reference cells r ∈ Ref ::= n[v : τ ] | n[ε : τ ]
computations c ∈ Comp ::= n← f(n1, . . . , nk)

DAIGs D : P(Ref )× P(Comp)
That is, a DAIG D = 〈R,C〉 is a directed acyclic hypergraph whose vertices R are

reference cells (optionally) containing statements and abstract states and whose edges C
are computations labelled by analysis function symbols, specifying dependencies in the
fixed-point computation. Names are also crucially important, acting as memoization
keys for analysis inputs and intermediate results.
This definition is carefully designed to encode abstract interpretations of reducible

program CFGs, and I have defined and implemented a constructive procedure by which
an initial DAIG may be constructed for any such program. The intuition of this pro-
cedure is illustrated by the following diagrams4, which show how each possible CFG
structure can be encoded into a DAIG structure:

4 I apply some ad-hoc shorthands in this figure for clarity: n` is the name of the initial abstract state
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A forward CFG edge to a non-join location is encoded by a transfer function-labelled
DAIG edge connecting reference cells for its abstract pre-state and statement label to a
reference cell for its abstract post-state.
Forward CFG edges to join locations are encoded by an analogous 3-reference-cell

widget for each incoming edge, with those intermediate results then joined together into
the ultimate post-state.
Back edges are encoded by some k (initially 1) unrollings of the abstract interpretation

of the corresponding natural loop body, with a widen (∇) edge between each abstract
unrolling and a fix edge from the two most recent abstract iterates to the ultimate
fixed-point abstract state. Note that this structure is acyclic but precisely encodes an
unbounded fixed-point computation over a cyclic underlying CFG.

3.2 Semantics
A DAIG D in the above grammar can be seen as a snapshot of a classical abstract
interpreter’s state, with partially computed results stored in non-empty reference cells
and yet-to-be-computed results represented by empty reference cells.
With that view, it is natural to express the evaluation of an abstract interpreter as

an operational semantics over DAIGs. I do so with an inductively defined small-step
judgment5 D ` n ⇒ v ;D′, which is read as “requesting the value of cell n in DAIG D

at location `, DStmt contains all of the loop body’s statement reference cells, and D(i)
Σ] contains all of

its abstract state reference cells with iteration count i. Each dotted line from DStmt thus represents
one or more DAIG edges, from each statement to corresponding abstract states.

5This is slightly simplified, eliding the detail of a global memoization table.
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returns v and yields updated DAIG D′.” The two key rules defining this judgment are:

Q-Reuse
n[v : τ ] ∈ R

〈R,C〉 ` n⇒ v ; 〈R,C〉

Q-Miss
n[ε : τ ] ∈ R n← f(n1, . . . , nk) ∈ C
Di−1 ` ni ⇒ vi ;Di (for i ∈ [1, k])

D0 = 〈R,C〉 v = f(v1, . . . , vk) f 6= fix
D0 ` n⇒ v ;Dk[n 7→ v]

The Q-Reuse rule states that when the value of a non-empty cell is requested, that
value can be returned and the DAIG left unchanged; Q-Miss handles the case when the
value of an empty cell is requested by requesting its dependencies, applying the analysis
function f to them, then returning the result and caching it for future reuse.
These evaluation rules govern demand queries for the contents of a DAIG, but have

no mechanism for handling incremental edits to the underlying program or intermediate
analysis facts. An edit must update some reference cell and also clear the value of (or
“dirty”) any reference cell that (transitively) depends on it. This behavior is also defined
inductively with a judgment form D ` n⇐ vε ;D′, read “mutating cell n with value vε

in a DAIG D yields updated DAIG D′.”
This edit operation is dual to the query operation described above: whereas queries

recursively compute the transitive backwards dependencies of some cell, edits recursively
dirty the transitive forwards dependencies.
Using these syntactic definitions and operational semantics, I have proven several key

properties of DAIGs. The most important top-line results are summarized as follows:
From-Scratch Consistency: For all program locations `, a query for ` in a well-formed6

DAIG returns J`K]∗ , the abstract state at ` as computed by a batch abstract interpreter.
Soundness of query results follows directly from this result and the fact the batch

analysis is sound. Note that this is in fact a stronger result: not only is the incremental
and demand-driven analysis sound, it is exactly as precise as the batch analysis.
Query Termination: For all names n in a well-formed DAIG D, there exists a value v
and updated DAIG D′ such that D ` n⇒ v ;D′.

This is an important result in the context of infinite-height abstract domains, since
it is not immediately obvious that the unrolling procedure described above is finite. It
relies on the convergence property of the widening operator ∇: since unrolling halts once
the sequence of abstract iterates converges and that sequence is produced by applying
∇ to an increasing sequence, the unrolling is guaranteed to terminate.

4 Implementation & Initial Experimental Results
In addition to the formal development described in the previous section, I have built a
prototype implementation of an incremental and demand-driven abstract interpretation

6Well-formedness here encompasses basic structural properties as well as a relation to some underlying
program and abstract interpreter
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framework based on DAIGs. I plan to continue extending and improving on this frame-
work as the basis for my future research and dissertation, so will describe it briefly in
this section.
The framework is implemented in approximately 2, 500 lines of OCaml code. Incre-

mental and demand-driven analysis logic, including unrolling for fixed-point computa-
tions, operates over an explicit graph representation of DAIGs. I also implement global
per-function memoization — elided here but formalized in a paper under review — using
adapton.ocaml, an open-source implementation of the technique of Hammer et al. [14].
The implementation is parametric in an abstract domain, and the effort required to

instantiate it with a new domain is comparable to the effort required to do so in a
classical abstract interpreter framework. I have implemented several example domains
already, including the shape analysis domain used in the overview and two classic nu-
merical domains (Intervals and Octagons [19]), all of which are inexpressible in existing
frameworks for incremental and/or demand-driven analysis.
Notably, the numerical domains are backed by APRON [17], a popular library of

well optimized off-the-shelf abstract domains. This is an advantage of my approach
as compared to existing incremental and demand-driven techniques: since I place no
restrictions on the abstract domain, it is compatible existing libraries written in general-
purpose programming languages.
This prototype framework has several shortcomings which I plan to address in my

thesis research. The most important is its handling of interprocedurality: currently, it
supports context-sensitive analysis of non-recursive programs with static calling seman-
tics (i.e., no virtual dispatch or higher-order functions). However, the vast majority
of modern programming languages do use these features; in order to evaluate the real-
world practicality of this technique, it is important that I implement an engine capable
of dealing with them. Some details on how I plan to tackle this are in the next section.

4.1 Initial Results
To evaluate the prototype framework, I have performed an experiment comparing its
performance against batch, incremental-only, and demand-driven-only analysis. This
experiment is conducted in the Octagon abstract domain, over synthetically generated
workloads of interleaved analysis queries and edits in a simple imperative JavaScript sub-
set including assignment, arrays, conditional branching, while loops, and non-recursive
function calls.
Since the goal of this technique is to provide analysis results to developers interactively

and in real-time, I measure the amount of time it takes each analysis variant to produce
analysis results in response to queries.
The following table summarizes my findings across over 150,000 analysis executions:
The results indicate that while incremental and demand-driven analysis each signifi-

cantly improve latencies with respect to the batch analysis baseline, combining the two
provides an additional large reduction in analysis latency.
This effect is most apparent in the tail of the distribution, since edits that dirty large

regions of the program are costly for incremental analysis, and queries that depend
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Analysis Time (sec)
mean p50 p90 p95 p99

Batch 9.0 1.4 18.9 36.2 173.6
Incremental 1.7 0.6 3.6 6.3 16.6
Demand-Driven 1.5 0.1 3.7 7.9 16.7
Incr. & D.-D. 0.3 0.1 0.7 1.2 3.0

on large regions of the program are costly for demand-driven analysis. By combining
incremental dirtying with demand-driven evaluation, my technique mitigates these worst-
case scenarios and consistently keeps analysis latencies low even as the program grows.
In particular, at the 95th percentile, the 1.2s latency of incremental demand-driven

analysis is more than five times lower than the next best configuration, and potentially
low enough to support interactive use.

5 Proposed Future Work
Through this point, this document primarily discusses research that I have already com-
pleted. In this section, I will present two extensions to this work that I am currently
pursuing and intend to include in my dissertation.

5.1 Higher-Order DAIGs
The statement-generic CFG programming language over which I have described my
technique, though it is well-suited for theoretical study and explaining the technique, is
insufficiently expressive to encode many real-world programs.
In particular, both dynamic dispatch and recursion present major issues.
Dynamic dispatch significantly complicates dependency tracking, for both demanded

evaluation (since all possible callers of a function must be analyzed to determine the
abstract state at that function’s entry) and incremental dirtying (since a dirtied callsite’s
possible callees are unknown). Although recursion can in principle be handled in the
same manner as imperative loops7, it is quite complicated to implement and formally
reason about this.
My current and future work attempts to address both of these issues using higher order

DAIGs. The key idea is to encode the abstract interpretation of an inter-procedural pro-
gram (with dynamic dispatch and/or recursion) by composing several intra-procedural
DAIGs using call edges and fixed-point operations.
This technique will enable my prototype analysis tool to scale up to the real-world

programs found in public datasets of edits and bugfixes (e.g. [28]). Further formal
development showing soundness, from-scratch consistency, and query termination of

7Essentially by unrolling the abstract interpretation of the recursive procedure in the DAIG, naming
intermediate values and inserting widens as needed.
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higher-order DAIGs will then form a trustworthy foundation for sound real-time abstract
interpretation.
The compositional structure of higher-order DAIGs may also support refinement-based

analysis techniques, such as the use of dynamic traces or heuristics to refine call graphs
and analysis results (e.g. [5, 12, 11, 25]) or the combination of forwards and backwards
abstract interpreters for value refinement [25].

5.2 Plan for Completion
I plan to perform the research proposed in this document and write my thesis by the end
of Summer 2021. I will consider the research complete when I have provided evidence
to support each of the hypotheses listed in Section 1.2.
Hypotheses 1 and 2 have already been demonstrated for a restricted class of programs

by my paper “Demanded Abstract Interpretation”, currently in review at PLDI ’21. I
plan to submit one to two more publications building upon this work in order to provide
evidence that the technique generalizes to more complex “real-world” programs.
First, I will implement the higher-order DAIG structure described in Section 5.1 and

build out a more robust frontend that encodes open source programs into these higher-
order DAIGs. There are several possible sources of such “real-world” programs that I
am considering for this work. The BugSwarm dataset [28], for example, includes bug-fix
commits from approximately 2000 Java and Python8 projects; by analyzing the pre-
commit program and then verifying the bug-fix in the post-commit program, I should
be able to demonstrate that (1) the DAIG framework scales to large programs that make
use of dynamic dispatch and (2) interactive re-verification significantly outperforms from-
scratch re-verification of the post-commit programs.
I will also formalize this analysis by building upon the intraprocedural formalism of

the previous paper, showing that query termination and from-scratch consistency are
preserved in the lifting. This work is under way and I plan to submit it to either
OOPSLA 2021 or POPL 2022.
Then, I plan to investigate hypothesis 3 by extending the higher-order DAIG formalism

and analysis framework to incorporate refinement. Ideally, I will be able to instantiate my
graph-based abstract interpretation framework to produce variants of existing refinement
techniques, including those that rely on dynamic analyses to handle reflection and/or
dynamic dispatch [5, 11] and those that refine the results of a coarse whole-program
analysis with a more precise and targetted analysis [4, 25]. I hope to write a new
paper formalizing the integration of refinement into the DAIG framework and submit
to SAS 2021 or PLDI 2022. Note that I consider this paper and the research around
refinement-based analysis frameworks to be a stretch goal. I belive that my contributions
are significant enough without a generalized refinement mechanism to merit completion
of my doctoral studies, but remain open to the possiblity that refinement is necessary to
efficiently realize analysis of dynamic dispatch with the higher-order DAIG mechanisms
described previously.

8I plan to limit the evaluation to either the Java or Python subset of the dataset, based on manual
investigation of the available commits.
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5.3 Thesis Outline and Milestones
The body of my dissertation will be structured into three chapters, focusing respec-
tively on intraprocedural analysis, context-sensitive interprocedural analysis over static
callgraphs, and general interprocedural analysis over dynamic callgraphs.
Intraprocedural Analysis: I consider the research work that will compose this first chap-
ter to be completed and written up in my paper “Demanded Abstract Interpretation”.
(currently in review at PLDI ’21) This paper is the basis of the formal and experi-
mental results presented in this document and the accompanying talk, and includes a
formal treatment of incremental/demand-driven abstract interpretation for intraproce-
dural control-flow graphs as well as proof-of-concept implementation and experimental
comparison to other analysis techniques.
Interprocedural Analysis of static calls: This chapter will discuss and formalize the
extension from intraprocedural control-flow graphs to interprocedural programs with
static calling semantics. That is, rather than programs consisting of a single edge-
labelled CFG as discussed in the previous chapter, this chapter will consider programs
consisting of a set of named procedures, each of which is an edge-labelled CFG possibly
containing calls to other named procedures.
The research work of this chapter is partially completed: my current implementation

handles this situation by parameterizing analysis in a context-sensitivity policy which
defines a carrier type of contexts and a procedure to determine the possible callee/con-
text pairs targetted by some callsite in some abstract state. I have implemented some
standard context sensitivities (including for example 0-, 1-, and 2-CFA) and empirically
demonstrated scaling to relatively-large but synthetically-generated interprocedural pro-
grams of the form discussed above.
However, the formalism is as-of-yet unaware of these implemented extensions, largely

due to time and space constraints imposed by conference formatting requirements and
deadlines. In order to complete this chapter, I plan to develop a formalism of this
restricted instance of interprocedural analysis, building upon the formal results of the
previous chapter as well as standard abstract interpretation results around context-
sensitvity. Notably, by adding a name production c for contexts c, this can be achieved
within a single DAIG, unlike the more general higher-order DAIGs to be discussed in
the following chapter.
Interprocedural Analysis of dynamic calls: This chapter will present a further gen-
eralization of the DAIG framework to interprocedural programs with dynamic calling
semantics. The basis of this extension will be the higher-order DAIG structure discussed
in Section 5.1, wherein multiple (intra-procedural) DAIGs are instantiated to produce
procedure summaries which can then be applied at callsites and over which fixed-points
can be computed to analyze both loops and recursive control-flow.
The majority of the formal and experimental work that will compose this chapter is

still to be completed. As discussed in Section 5.2, I plan to work on these problems over
the next five months and submit a paper on the results to a conference sometime in the
late spring/early summer of 2021.
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I will consider this chapter to be completed once I have produced (1) a formalism
in which interprocedural analysis of dynamic callgraphs can be expressed in a prov-
ably sound, terminating, and from-scratch consistent9 manner and (2) implemented an
analysis frontend and DAIG-based backend capable of analyzing real-world programs10.
Timeline I will consider my doctoral studies complete once I have produced a disserta-
tion built around these three pillars, which I believe constitute a significant contribution
to the fields of incremental and demand-driven program analysis.
I expect to complete the core research underpinning the dissertation by approximately

July ’21, write the dissertation itself over the following several months, and submit and
defend it no later than Fall ’21. I understand that this timeline is on the aggressive side
and will continually reevaluate my progress and results, remaining open to the possibility
of delays.
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