
Demanded
Abstract Interpretation

Benno Stein
University of Colorado Boulder
benno.stein@colorado.edu

PLDI ‘21

Manu Sridharan
University of California, Riverside
manu@cs.ucr.edu

Bor-Yuh Evan Chang
University of Colorado Boulder & Amazon
evan.chang@colorado.edu

* Bor-Yuh Evan Chang holds concurrent appointments as an Associate Professor at the University of Colorado Boulder and as an
Amazon Scholar. This talk describes work performed at the University of Colorado Boulder and is not associated with Amazon.

2

Batch Static Analysis Workflow

CI ServerProgrammer

2

Batch Static Analysis Workflow

* i.e. safe with respect to some program analyzer

CI ServerIs this program okay?*
Programmer

2

Batch Static Analysis Workflow

* i.e. safe with respect to some program analyzer

CI ServerIs this program okay?*
Programmer

2

Batch Static Analysis Workflow

* i.e. safe with respect to some program analyzer

CI ServerIs this program okay?*

Commit, merge,
deploy, etc.

Programmer

3

Batch Static Analysis Workflow

Programmer CI Server

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

CI Server

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

CI Server

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

CI Server

How about this one?

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

CI Server

How about this one?

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

CI Server

How about this one?

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

CI Server

How about this one?

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

Commit, merge,
deploy, etc.

CI Server

How about this one?

3

Batch Static Analysis Workflow

Programmer
Is this program okay?

Commit, merge,
deploy, etc.

CI Server

How about this one?

This is slow and frustrating:
each iteration can be on the
order of an hour or more.

4

Programmer CI Server

Interactive Static Analysis Workflow

Is this program okay?

4

Programmer CI Server

Interactive Static Analysis Workflow

Is this program okay?

4

Programmer CI Server

Interactive Static Analysis Workflow

Is this program okay?

 Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z

4

Programmer CI Server

Did my edits fix
those alarm(s)?

Interactive Static Analysis Workflow

Is this program okay?

 Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z

4

Programmer CI Server

Did my edits fix
those alarm(s)?

Interactive Static Analysis Workflow

Is this program okay?

 Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z

4

Programmer CI Server

Did my edits fix
those alarm(s)?

Interactive Static Analysis Workflow

Is this program okay?

 Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z

/

4

Programmer CI Server

Did my edits fix
those alarm(s)?

Commit, merge,
deploy, etc.

Interactive Static Analysis Workflow

Is this program okay?

 Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z

/

4

Programmer CI Server

Did my edits fix
those alarm(s)?

Commit, merge,
deploy, etc.

Interactive Static Analysis Workflow

Is this program okay?

 Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z

/

User wants this to be:
• Correct with respect to underlying

batch program analyzer
• Fast enough for interactive use as the

programmer makes edits and issues
queries — on the order of seconds

4

Programmer CI Server

Did my edits fix
those alarm(s)?

Commit, merge,
deploy, etc.

Interactive Static Analysis Workflow

Is this program okay?

 Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z

/

Analysis designer wants this to be:
• Plug-and-play without need for ad-hoc

incremental/demand reasoning
• General w.r.t. domains, handling

infinite-height, widening, etc.

User wants this to be:
• Correct with respect to underlying

batch program analyzer
• Fast enough for interactive use as the

programmer makes edits and issues
queries — on the order of seconds

Batch Analysis

5

Over-
Approximate

Facts
Program

Incremental Analysis

6

Over-
Approximate

Facts
Program

Incremental Analysis

6

Over-
Approximate

Facts
Program

Δ

New
Program

Incremental Analysis

6

Over-
Approximate

Facts
Program

Δ

New
Program

New Over-
Approximate

Facts

Incremental Analysis

6

Over-
Approximate

Facts
Program

???Δ

New
Program

New Over-
Approximate

Facts

Incremental Analysis

6

Over-
Approximate

Facts
Program

Demand-Driven Analysis

7

Over-
Approximate

Facts
Program

Demand-Driven Analysis

7

Over-
Approximate

Facts
Program

query

Demand-Driven Analysis

7

Over-
Approximate

Facts
Program

query
result

Demand-Driven Analysis

7

Over-
Approximate

Facts
Program

???

query
result

Abstract Interpretation

8

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯

Over-
Approximate

Facts
Program

Abstract Interpretation

8

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯

Over-
Approximate

Facts
Program

Abstract
Domain

Abstract Interpretation

8

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯

Over-
Approximate

Facts
Program

Fixed-Point
Solver

Abstract
Domain

Abstract Interpretation

8

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯

Over-
Approximate

Facts
Program

Fixed-Point
Solver

Pros:
• Expressivity of abstract domains
• Robust metatheory: soundness,

termination, etc.
• Modularity w.r.t abstractions and

solvers

Abstract
Domain

Abstract Interpretation

8

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯

Over-
Approximate

Facts
Program

Fixed-Point
Solver

Pros:
• Expressivity of abstract domains
• Robust metatheory: soundness,

termination, etc.
• Modularity w.r.t abstractions and

solvers

Cons:
• Whole-program fixed-points

are expensive to compute
• Black-box: invariant map only

holds meaning at fixed-point

Abstract
Domain

Demanded Abstract Interpretation

9

(Initial)
Program

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯
Abstract
Domain

Demanded Abstract Interpretation

9

Demand-driven queries
“What is the abstract state at this
program location?”

(Initial)
Program

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯
Abstract
Domain

Demanded Abstract Interpretation

9

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements(Initial)

Program

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯
Abstract
Domain

Demanded Abstract Interpretation

9

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

(Initial)
Program

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯
Abstract
Domain

10

DAIG

(Initial)
Program

φ0

⊔

▿
⊑Σ♯

[[⋅]]♯
Abstract
Domain

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

Demanded Abstract Interpretation Graphs (DAIGs)

11

DAIG

A DAIG reifies the dependency structure of an abstract interpretation.

(Initial)
Program

Demanded Abstract Interpretation Graphs (DAIGs)

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

11

DAIG

A DAIG reifies the dependency structure of an abstract interpretation.
Reference cell vertices…
 … contain intermediate analysis results & program syntax
 … are uniquely named and potentially empty

(Initial)
Program

Demanded Abstract Interpretation Graphs (DAIGs)

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

11

DAIG

A DAIG reifies the dependency structure of an abstract interpretation.
Reference cell vertices…
 … contain intermediate analysis results & program syntax
 … are uniquely named and potentially empty
Computation edges…
 … acyclically connect reference cells
 … denote analysis computations (e.g.)[[⋅]]♯, ⊔ , ∇

(Initial)
Program

Demanded Abstract Interpretation Graphs (DAIGs)

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

12

DAIG

A DAIG reifies the dependency structure of an abstract interpretation.
Reference cell vertices…
 … contain program syntax & intermediate analysis results
 … are uniquely named and potentially empty
Computation edges…
 … acyclically connect reference cells
 … are labelled by analysis functions (e.g.)[[⋅]]♯, ⊔ , ∇

(Initial)
Program

Contributions

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

DAIG

Finite & acyclic dependency
graph, supporting incremental
and demand-driven evaluation

12

DAIG

A DAIG reifies the dependency structure of an abstract interpretation.
Reference cell vertices…
 … contain program syntax & intermediate analysis results
 … are uniquely named and potentially empty
Computation edges…
 … acyclically connect reference cells
 … are labelled by analysis functions (e.g.)[[⋅]]♯, ⊔ , ∇

(Initial)
Program

Contributions

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

DAIG

Finite & acyclic dependency
graph, supporting incremental
and demand-driven evaluation

Cyclic and unbounded for fixed-point
computations in infinite-height domains.

12

DAIG

A DAIG reifies the dependency structure of an abstract interpretation.
Reference cell vertices…
 … contain program syntax & intermediate analysis results
 … are uniquely named and potentially empty
Computation edges…
 … acyclically connect reference cells
 … are labelled by analysis functions (e.g.)[[⋅]]♯, ⊔ , ∇

(Initial)
Program

Contributions

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

DAIG

Finite & acyclic dependency
graph, supporting incremental
and demand-driven evaluation

via demanded unrolling of
fixed-point computations

Cyclic and unbounded for fixed-point
computations in infinite-height domains.

12

DAIG

A DAIG reifies the dependency structure of an abstract interpretation.
Reference cell vertices…
 … contain program syntax & intermediate analysis results
 … are uniquely named and potentially empty
Computation edges…
 … acyclically connect reference cells
 … are labelled by analysis functions (e.g.)[[⋅]]♯, ⊔ , ∇

(Initial)
Program

Contributions

Demand-driven queries
“What is the abstract state at this
program location?”

Incremental edits
Insert, modify, or delete statements

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

DAIG

Finite & acyclic dependency
graph, supporting incremental
and demand-driven evaluation

via demanded unrolling of
fixed-point computations

Cyclic and unbounded for fixed-point
computations in infinite-height domains.

From-scratch consistent results
Query responses are guaranteed identical to
batch analysis on current program version

13

DAIG(Initial) Program

Demanded Abstract Interpretation Graphs (DAIGs)

(Initial)
Program

13

DAIG(Initial) Program

Demanded Abstract Interpretation Graphs (DAIGs)

CFG DAIG Encoding (by example)→

14

Corresponding DAIG snippet

l
s

l′�

Program snippet

CFG DAIG Encoding (by example)→

14

Corresponding DAIG snippet

l
s

l′�

Program snippet

l ?

l′� ?

CFG DAIG Encoding (by example)→

14

Corresponding DAIG snippet

l
s

l′�

Program snippet

l ?

l′� ?

sl→ l′�

CFG DAIG Encoding (by example)→

14

Corresponding DAIG snippet

l
s

l′�

Program snippet

l ?

l′� ?

sl→ l′�

Underlined terms are names
derived e.g. by hashing

CFG DAIG Encoding (by example)→

14

Corresponding DAIG snippet

l
s

l′�

Program snippet

l ?

l′� ?

sl→ l′�

CFG DAIG Encoding (by example)→

14

Corresponding DAIG snippet

l
s

l′�

Program snippet

[[⋅]]♯

l ?

l′� ?

sl→ l′�

Demand-Driven Query Evaluation

15

s

[[⋅]]♯

l

l′�

l→ l′�?

?

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

15

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�?

?

 i.e. “What is the value of cell ?”l′�

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

15

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�?

?

 i.e. “What is the value of cell ?”l′�

l′� = [[l→ l′�]]♯ l

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

15

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�?

?

 i.e. “What is the value of cell ?”l′�

l′� = [[l→ l′�]]♯ l

Internal query for l → l′�

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

16

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�?

?

 i.e. “What is the value of cell ?”l′�

l′� = [[s]]♯ l

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

16

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�?

?

 i.e. “What is the value of cell ?”l′�

l′� = [[s]]♯ l

Internal query for l

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

16

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�?

?

 i.e. “What is the value of cell ?”l′�

l′� = [[s]]♯ l

Internal query for l

Recursively compute
transitive dependencies

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

16

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�

?

 i.e. “What is the value of cell ?”l′�

l′� = [[s]]♯ l

Internal query for l

φl

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

17

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�

?

 i.e. “What is the value of cell ?”l′�

l′� = [[s]]♯ φl

φl

l
s

l′�

Program snippet

Demand-Driven Query Evaluation

17

s

[[⋅]]♯

Demand-driven query:
 “What is the abstract state at ?”l′�

l

l′�

l→ l′�

 i.e. “What is the value of cell ?”l′�

l′� = [[s]]♯ φl

φl

φl′�

l
s

l′�

Program snippet

Incremental Change Propagation

18

s

[[⋅]]♯

l

l′�

l→ l′�φl

φl′�

l
s

l′�

Incremental Change Propagation

18

s

[[⋅]]♯

l

l′�

l→ l′�φl

φl′�

l
s

l′�

Program edit:
Modify statement to s s′�

s′�

l

l′�

Incremental Change Propagation

18

s

[[⋅]]♯

l

l′�

l→ l′� i.e. “Write to the cell named ”s′� l → l′� φl

φl′�

l
s

l′�

Program edit:
Modify statement to s s′�

s′�

l

l′�

Incremental Change Propagation

19

s′�

[[⋅]]♯

l

l′�

l→ l′�φl

φl′�

 i.e. “Write to the cell named ”s′� l → l′�

l
s

l′�

Program edit:
Modify statement to s s′�

s′�

l

l′�

Incremental Change Propagation

19

s′�

[[⋅]]♯

l

l′�

l→ l′�φl

φl′�

Eagerly discard forwards-
reachable analysis results

 i.e. “Write to the cell named ”s′� l → l′�

l
s

l′�

Program edit:
Modify statement to s s′�

s′�

l

l′�

Incremental Change Propagation

19

s′�

[[⋅]]♯

l

l′�

l→ l′�φl

Eagerly discard forwards-
reachable analysis results

?

 i.e. “Write to the cell named ”s′� l → l′�

l
s

l′�

Program edit:
Modify statement to s s′�

s′�

l

l′�

Incremental Change Propagation

19

s′�

[[⋅]]♯

l

l′�

l→ l′�φl

Eagerly discard forwards-
reachable analysis results

?

 … recursively

 i.e. “Write to the cell named ”s′� l → l′�

l
s

l′�

Program edit:
Modify statement to s s′�

s′�

l

l′�

Incremental Change Propagation

19

s′�

[[⋅]]♯

l

l′�

l→ l′�φl

Eagerly discard forwards-
reachable analysis results

?

 … recursively

Subsequent queries only
recompute those analysis results
potentially affected by the edit!

 i.e. “Write to the cell named ”s′� l → l′�

l
s

l′�

Program edit:
Modify statement to s s′�

s′�

l

l′�

Cyclic Control Flow

20

Corresponding DAIG snippetProgram snippet

l
s1

l′�

s2

Cyclic Control Flow

20

Corresponding DAIG snippetProgram snippet

l
s1

l′�

s2

l0

?

Cyclic Control Flow

20

Corresponding DAIG snippetProgram snippet

l
s1

l′�

s2

l0

?
s1 [[⋅]]♯

l→ l′�

?l′�
0

Cyclic Control Flow

20

Corresponding DAIG snippetProgram snippet

l
s1

l′�

s2

l0

?
s1 [[⋅]]♯

l→ l′�

?l′�
0

s2l′�→ l

?l0,1

[[⋅]]♯

Cyclic Control Flow

20

Corresponding DAIG snippetProgram snippet

l
s1

l′�

s2

l0

?
s1 [[⋅]]♯

l→ l′�

?l′�
0

s2l′�→ l

?l0,1

[[⋅]]♯

l1

?∇

Cyclic Control Flow

20

Corresponding DAIG snippetProgram snippet

l
s1

l′�

s2

l0

?
s1 [[⋅]]♯

l→ l′�

?l′�
0

s2l′�→ l

?l0,1

[[⋅]]♯

l1

?∇

l*

?
fix

Cyclic Control Flow

21

Corresponding DAIG snippetProgram snippet

l
s1

l′�

s2

l0

s1 [[⋅]]♯

?
l*

?l→ l′�

?l′�
0

s2l′�→ l

?l0,1

l1

?

[[⋅]]♯

∇

fix

DAIG Fixed-point Computation

22

l0

s1 [[⋅]]♯

?
l*

?l→ l′�

?l′�
0

s2l′�→ l

?l0,1

l1

?

[[⋅]]♯

∇

fix

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

22

l0

s1 [[⋅]]♯

?
l*

?l→ l′�

?l′�
0

s2l′�→ l

?l0,1

l1

?

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”ll

s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

22

l0

s1 [[⋅]]♯

?
l*

?l→ l′�

?l′�
0

s2l′�→ l

?l0,1

l1

?

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

l
s1

l′�

s2

Program snippet

23

l0

s1 [[⋅]]♯

?
l*

?l→ l′�

?l′�
0

s2l′�→ l

?l0,1

l1

?

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

Compute dependencies as normal…

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

23

l0

s1 [[⋅]]♯

l*

?l→ l′�

?l′�
0

s2l′�→ l

?l0,1

l1

?

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

Compute dependencies as normal…

φ0
l

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

23

l0

s1 [[⋅]]♯

l*

?l→ l′�

l′�
0

s2l′�→ l

?l0,1

l1

?

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

Compute dependencies as normal…

φ0
l

φ0
l′�

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

23

l0

s1 [[⋅]]♯

l*

?l→ l′�

l′�
0

s2l′�→ l

l0,1

l1

?

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

Compute dependencies as normal…

φ0
l

φ0,1
l

φ0
l′�

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

23

l0

s1 [[⋅]]♯

l*

?l→ l′�

l′�
0

s2l′�→ l

l0,1

l1

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

Compute dependencies as normal…

φ0
l

φ0,1
l

φ0
l′�

φ1
l

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

23

l0

s1 [[⋅]]♯

l*

?l→ l′�

l′�
0

s2l′�→ l

l0,1

l1

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

Compute dependencies as normal…

φ0
l

φ0,1
l

φ0
l′�

φ1
l

If the zeroth and first abstract iterates
are equal (i.e.) then that’s the

fixed point; write to and return.
φ0

l = φ1
l

l*

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

23

l0

s1 [[⋅]]♯

l*

l→ l′�

l′�
0

s2l′�→ l

l0,1

l1

[[⋅]]♯

∇

fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

 i.e. “What is the value of cell ?”l*

Compute dependencies as normal…

φ0
l

φ0,1
l

φ0
l′�

φ1
l

If the zeroth and first abstract iterates
are equal (i.e.) then that’s the

fixed point; write to and return.
φ0

l = φ1
l

l*

φ1
l

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

24

l*

?
fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

l0

s1 [[⋅]]♯

l→ l′�

l′�
0

s2l′�→ l

l0,1

[[⋅]]♯

∇φ0
l

φ0,1
l

φ0
l′�

l1

φ1
l

Otherwise, unroll the DAIG’s loop
representation, re-query, and continue.

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

24

l*

?
fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

l0

s1 [[⋅]]♯

l→ l′�

l′�
0

s2l′�→ l

l0,1

[[⋅]]♯

∇φ0
l

φ0,1
l

φ0
l′�

l1

φ1
l

Otherwise, unroll the DAIG’s loop
representation, re-query, and continue.

[[⋅]]♯

?
l′�

1
?

l1,2

l2

?

[[⋅]]♯

∇

Statement cells not unrolled!

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

24

l*

?
fix

Demand-driven query:
 “What is the fixed-point abstract state at ?”l

l0

s1 [[⋅]]♯

l→ l′�

l′�
0

s2l′�→ l

l0,1

[[⋅]]♯

∇φ0
l

φ0,1
l

φ0
l′�

l1

φ1
l

Otherwise, unroll the DAIG’s loop
representation, re-query, and continue.

[[⋅]]♯

?
l′�

1
?

l1,2

l2

?

[[⋅]]♯

∇

Statement cells not unrolled!

Widen’s “ascending-chains-converge”
property ensures that unrolling is finite!

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation

DAIG Formalism

25

DAIG Formalism

25

A DAIG is an explicit representation of a
partially-evaluated abstract interpretation

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

Given an initial
DAIG*…

* this elides some details of the actual semantics

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

⊢ n ⇒ v
Given an initial

DAIG*…
… a query for the value

named yields …n v

* this elides some details of the actual semantics

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

⊢ n ⇒ v ′�;
Given an initial

DAIG*…
… a query for the value

named yields …n v
… and an updated

DAIG*.

* this elides some details of the actual semantics

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

⊢ n ⇒ v ′�;
Given an initial

DAIG*…
… a query for the value

named yields …n v
… and an updated

DAIG*.

Edit handling/change propagation is also a small-step operational semantics

* this elides some details of the actual semantics

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

⊢ n ⇒ v ′�;
Given an initial

DAIG*…
… a query for the value

named yields …n v
… and an updated

DAIG*.

Edit handling/change propagation is also a small-step operational semantics

Given an initial
DAIG…

* this elides some details of the actual semantics

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

⊢ n ⇒ v ′�;
Given an initial

DAIG*…
… a query for the value

named yields …n v
… and an updated

DAIG*.

Edit handling/change propagation is also a small-step operational semantics

⊢ n ⇐ v
Given an initial

DAIG…
… an edit that writes
value to cell …v n

* this elides some details of the actual semantics

DAIG Formalism

26

Query evaluation == (small-step) operational semantics

⊢ n ⇒ v ′�;
Given an initial

DAIG*…
… a query for the value

named yields …n v
… and an updated

DAIG*.

Edit handling/change propagation is also a small-step operational semantics

⊢ n ⇐ v ′�;
Given an initial

DAIG…
… an edit that writes
value to cell …v n

… yields an updated
DAIG.

* this elides some details of the actual semantics

Termination

27

Termination

27

If this initial DAIG is a valid
abstract interpretation state
for some program…

Termination

27

If this initial DAIG is a valid
abstract interpretation state
for some program…

⊢ n

… then a query for any therein …n

Termination

27

If this initial DAIG is a valid
abstract interpretation state
for some program…

⊢ n

… then a query for any therein …n

′�;

… will terminate with some value
and an updated DAIG.

v

⇒ v

From-Scratch Consistency

28

⊢ n ⇒ v ′�;

From-Scratch Consistency

28

⊢ n ⇒ v ′�;
If the current DAIG is a
valid abstract interpretation
state for some program…

From-Scratch Consistency

28

⊢ n ⇒ v ′�;
If the current DAIG is a
valid abstract interpretation
state for some program… … and is the name of

the abstract state at a
program location …

n

l

From-Scratch Consistency

28

⊢ n ⇒ v ′�;
If the current DAIG is a
valid abstract interpretation
state for some program… … and is the name of

the abstract state at a
program location …

n

l … then is precisely the same
value that a batch abstract
interpreter would compute at .

v

l

From-Scratch Consistency

28

⊢ n ⇒ v ′�;
If the current DAIG is a
valid abstract interpretation
state for some program… … and is the name of

the abstract state at a
program location …

n

l … then is precisely the same
value that a batch abstract
interpreter would compute at .

v

l

No loss of precision due to incrementality/demand!

From-Scratch Consistency

28

⊢ n ⇒ v ′�;
If the current DAIG is a
valid abstract interpretation
state for some program… … and is the name of

the abstract state at a
program location …

n

l … then is precisely the same
value that a batch abstract
interpreter would compute at .

v

l

Corollary: DAIG query results are sound.

No loss of precision due to incrementality/demand!

Expressivity

29

Does a DAIG-based analysis framework support rich
analysis domains that cannot be handled by existing
incremental and/or demand-driven frameworks?

Expressivity

29

Does a DAIG-based analysis framework support rich
analysis domains that cannot be handled by existing
incremental and/or demand-driven frameworks?

Prototype Implementation: github.com/cuplv/dai
 - 2500 lines of OCaml code  
 - Parametric in a statement language and abstract domain

∼

Expressivity

29

Does a DAIG-based analysis framework support rich
analysis domains that cannot be handled by existing
incremental and/or demand-driven frameworks?

Prototype Implementation: github.com/cuplv/dai
 - 2500 lines of OCaml code  
 - Parametric in a statement language and abstract domain

∼

module type Domain = sig

 type t

 val init : t
 val interpret : stmt -> t -> t
 val implies : t -> t -> bool 
 val join : t -> t -> t 
 val widen : t -> t -> t

 (* elided: equal, hash, etc. *)
end

Expressivity

29

Does a DAIG-based analysis framework support rich
analysis domains that cannot be handled by existing
incremental and/or demand-driven frameworks?

Prototype Implementation: github.com/cuplv/dai
 - 2500 lines of OCaml code  
 - Parametric in a statement language and abstract domain

∼

module type Domain = sig

 type t

 val init : t
 val interpret : stmt -> t -> t
 val implies : t -> t -> bool 
 val join : t -> t -> t 
 val widen : t -> t -> t

 (* elided: equal, hash, etc. *)
end

abstract states Σ♯

transfer function [[⋅]]♯
initial abstract state φ0

partial order ⊑

widening ∇
join ⊔

Expressivity

29

Does a DAIG-based analysis framework support rich
analysis domains that cannot be handled by existing
incremental and/or demand-driven frameworks?

Prototype Implementation: github.com/cuplv/dai
 - 2500 lines of OCaml code  
 - Parametric in a statement language and abstract domain

∼

module type Domain = sig

 type t

 val init : t
 val interpret : stmt -> t -> t
 val implies : t -> t -> bool 
 val join : t -> t -> t 
 val widen : t -> t -> t

 (* elided: equal, hash, etc. *)
end

abstract states Σ♯

transfer function [[⋅]]♯
initial abstract state φ0

partial order ⊑

widening ∇
join ⊔

Domain implementer doesn’t
need to reason about

incrementality or demand!

Expressivity

30

Do DAIGs support rich abstract domains that cannot
be handled by existing incremental and/or demand-
driven frameworks?

Expressivity

30

Do DAIGs support rich abstract domains that cannot
be handled by existing incremental and/or demand-
driven frameworks?

Interval Analysis 
 - Abstract values model integers  
 - Used to verify array accesses in-bounds in a JS data structure library.

[x, y] {i |x ≤ i ≤ y}

Expressivity

30

Do DAIGs support rich abstract domains that cannot
be handled by existing incremental and/or demand-
driven frameworks?

Interval Analysis 
 - Abstract values model integers  
 - Used to verify array accesses in-bounds in a JS data structure library.

[x, y] {i |x ≤ i ≤ y}

Shape Analysis 
 - Separation logic formulae over linked-list-segment primitive lseg  
 - Used to verify memory safety of linked-list append, reverse, etc.

(̂x, ̂y)

Expressivity

30

Do DAIGs support rich abstract domains that cannot
be handled by existing incremental and/or demand-
driven frameworks?

Interval Analysis 
 - Abstract values model integers  
 - Used to verify array accesses in-bounds in a JS data structure library.

[x, y] {i |x ≤ i ≤ y}

Shape Analysis 
 - Separation logic formulae over linked-list-segment primitive lseg  
 - Used to verify memory safety of linked-list append, reverse, etc.

(̂x, ̂y)

Octagon Analysis 
 - Invariants of the form  
 - Used in scalability experiments

±x ± y ≤ c

Expressivity

30

Do DAIGs support rich abstract domains that cannot
be handled by existing incremental and/or demand-
driven frameworks?

Interval Analysis 
 - Abstract values model integers  
 - Used to verify array accesses in-bounds in a JS data structure library.

[x, y] {i |x ≤ i ≤ y}

Shape Analysis 
 - Separation logic formulae over linked-list-segment primitive lseg  
 - Used to verify memory safety of linked-list append, reverse, etc.

(̂x, ̂y)

Octagon Analysis 
 - Invariants of the form  
 - Used in scalability experiments

±x ± y ≤ c
Intervals & Octagons built with

APRON — optimized open-source
numerical domains in C

Scalability

31

For these rich analysis domains, what degree of
performance improvement can be obtained by performing
incremental and/or demand-driven analysis?

Scalability

31

For these rich analysis domains, what degree of
performance improvement can be obtained by performing
incremental and/or demand-driven analysis?

“Edit” = add a random statement,
conditional, or loop at a random
program location

Scalability

31

For these rich analysis domains, what degree of
performance improvement can be obtained by performing
incremental and/or demand-driven analysis?

~5k LOC

“Edit” = add a random statement,
conditional, or loop at a random
program location

Initial program: skip

Scalability

32

For these rich analysis domains, what degree of
performance improvement can be obtained by performing
incremental and/or demand-driven analysis?

Scalability

33

Scalability

33

Scalability

33

Scalability

34

Fraction of
Analysis Runs

Completed

Incr. & D.-D.
Incremental
Demand-Driven 
Batch

The combination of incrementality and demand
consistently obtains lower latencies than either
incrementality or demand alone.

Scalability

34

Fraction of
Analysis Runs

Completed

Incr. & D.-D.
Incremental
Demand-Driven 
Batch

The combination of incrementality and demand
consistently obtains lower latencies than either
incrementality or demand alone.

p95: 1.2s ; 6.3s ; 7.9s ; 36.2s

Benno Stein
University of Colorado Boulder
benno.stein@colorado.edu

PLDI ‘21

Thanks for watching!

Check out our paper or come chat at
the Q&A for more details.

• Batch whole-program analysis is too costly to support real-time
developer interaction, but existing incremental and demand-
driven analyses are often limited in expressivity or granularity

• By leveraging graph-based incremental computation techniques,
we define an engine for incremental and demand-driven
evaluation of arbitrary abstract interpreters (and prove it sound
& from-scratch consistent)

Conclusion:

