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each iteration can be on the 
order of an hour or more.
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Is this program okay?

   Alarms:
 - Possible issue Foo at location X
 - Possible issue Bar at location Y
 - Possible issue Baz at location Z  

/

Analysis designer wants this to be: 
• Plug-and-play without need for ad-hoc 

incremental/demand reasoning 
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φ0,1
l

φ0
l′�

φ1
l

If the zeroth and first abstract iterates 
are equal (i.e. ) then that’s the 

fixed point; write to  and return.
φ0

l = φ1
l

l*

l
s1

l′�

s2

Program snippet
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l→ l′�

l′�
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s2l′�→ l

l0,1

l1

[[ ⋅ ]]♯

∇

fix

Demand-driven query: 
   “What is the fixed-point abstract state at  ?”l

  i.e. “What is the value of cell  ?”l*

Compute dependencies as normal…

φ0
l

φ0,1
l

φ0
l′�

φ1
l

If the zeroth and first abstract iterates 
are equal (i.e. ) then that’s the 

fixed point; write to  and return.
φ0

l = φ1
l

l*

φ1
l

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation
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l*

?
fix
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l′�
0
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l
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l*

?
fix

Demand-driven query: 
   “What is the fixed-point abstract state at  ?”l

l0

s1 [[ ⋅ ]]♯

l→ l′�

l′�
0

s2l′�→ l

l0,1

[[ ⋅ ]]♯

∇φ0
l

φ0,1
l

φ0
l′�

l1

φ1
l

Otherwise, unroll the DAIG’s loop 
representation, re-query, and continue.

[[ ⋅ ]]♯

?
l′�

1
?

l1,2

l2

?

[[ ⋅ ]]♯

∇

Statement cells not unrolled!

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation
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l*

?
fix

Demand-driven query: 
   “What is the fixed-point abstract state at  ?”l

l0

s1 [[ ⋅ ]]♯

l→ l′�

l′�
0

s2l′�→ l

l0,1

[[ ⋅ ]]♯

∇φ0
l

φ0,1
l

φ0
l′�

l1

φ1
l

Otherwise, unroll the DAIG’s loop 
representation, re-query, and continue.

[[ ⋅ ]]♯

?
l′�

1
?

l1,2

l2

?

[[ ⋅ ]]♯

∇

Statement cells not unrolled!

Widen’s “ascending-chains-converge” 
property ensures that unrolling is finite!

l
s1

l′�

s2

Program snippet

DAIG Fixed-point Computation
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Query evaluation == (small-step) operational semantics

⊢ n ⇒ v ′�;
Given an initial 

DAIG*…
… a query for the value 

named  yields …n v
… and an updated 

DAIG*.

Edit handling/change propagation is also a small-step operational semantics

⊢ n ⇐ v ′�;
Given an initial 

DAIG…
… an edit that writes 
value  to cell  …v n

… yields an updated 
DAIG.

* this elides some details of the actual semantics
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Termination

27

If this initial DAIG is a valid 
abstract interpretation state 
for some program…

⊢ n

… then a query for any  therein …n

′�;

… will terminate with some value  
and an updated DAIG.

v

⇒ v
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⊢ n ⇒ v ′�;
If the current DAIG is a 
valid abstract interpretation 
state for some program… … and  is the name of 

the abstract state at a 
program location  …

n

l … then  is precisely the same 
value that a batch abstract 
interpreter would compute at .

v

l

Corollary: DAIG query results are sound. 

No loss of precision due to incrementality/demand!
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Does a DAIG-based analysis framework support rich 
analysis domains that cannot be handled by existing 
incremental and/or demand-driven frameworks?

Prototype Implementation: github.com/cuplv/dai 
 - 2500 lines of OCaml code  
 - Parametric in a statement language and abstract domain

∼

module type Domain = sig 

  type t 

  val init : t 
  val interpret : stmt -> t -> t 
  val implies : t -> t -> bool 
  val join : t -> t -> t 
  val widen : t -> t -> t 

  (* elided: equal, hash, etc. *)  
end

abstract states Σ♯

transfer function [[ ⋅ ]]♯
initial abstract state φ0

partial order ⊑

widening ∇
join ⊔

Domain implementer doesn’t 
need to reason about 

incrementality or demand!
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Do DAIGs support rich abstract domains that cannot 
be handled by existing incremental and/or demand-
driven frameworks?

Interval Analysis 
 - Abstract values  model integers  
 - Used to verify array accesses in-bounds in a JS data structure library.

[x, y] {i |x ≤ i ≤ y}

Shape Analysis 
 - Separation logic formulae over linked-list-segment primitive lseg  
 - Used to verify memory safety of linked-list append, reverse, etc.

( ̂x, ̂y)

Octagon Analysis 
 - Invariants of the form  
 - Used in scalability experiments

±x ± y ≤ c
Intervals & Octagons built with  

APRON — optimized open-source 
numerical domains in C
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31

For these rich analysis domains, what degree of 
performance improvement can be obtained by performing 
incremental and/or demand-driven analysis?

~5k LOC

“Edit” = add a random statement, 
conditional, or loop at a random 
program location

Initial program:  skip
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Fraction of 
Analysis Runs 

Completed

Incr. & D.-D. 
Incremental 
Demand-Driven 
Batch

The combination of incrementality and demand 
consistently obtains lower latencies than either 
incrementality or demand alone.

p95: 1.2s ; 6.3s ; 7.9s ; 36.2s
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Thanks for watching! 

Check out our paper or come chat at 
the Q&A for more details. 

• Batch whole-program analysis is too costly to support real-time 
developer interaction, but existing incremental and demand-
driven analyses are often limited in expressivity or granularity 

• By leveraging graph-based incremental computation techniques, 
we define an engine for incremental and demand-driven 
evaluation of arbitrary abstract interpreters (and prove it sound 
& from-scratch consistent)

Conclusion: 


