
Static Analysis with Demand-Driven Value Refinement
Benno Stein Benjamin Barslev Nielsen Bor-Yuh Evan Chang Anders Møller
University of Colorado Boulder University of Colorado BoulderAarhus University Aarhus University

 Static analysis tools for JavaScript must
strike a delicate balance, achieving the level of precision
required by the most complex features of target
programs without incurring prohibitively high analysis
time. For example, reasoning about dynamic property
accesses sometimes requires precise relational
information connecting the object, the dynamically-
computed property name, and the property value. Even
a minor precision loss at such critical program locations
can result in a proliferation of spurious dataflow that
renders the analysis results useless.
 We present a technique by which a conventional non-
relational static dataflow analysis can be combined
soundly with a value refinement mechanism to increase
precision on demand at critical locations. Crucially, our
technique is able to incorporate relational information
from the value refinement mechanism into the non-
relational domain of the dataflow analysis.
 We demonstrate the feasibility of this approach by
extending an existing JavaScript static analysis with a
demand-driven value refinement mechanism that relies
on backwards abstract interpretation. Our evaluation
finds that precise analysis of widely used JavaScript
utility libraries depends heavily on the precision at a
small number of critical locations that can be identified
heuristically, and that backwards abstract interpretation
is an effective mechanism to provide that precision on
demand.

Abstract Even a minor precision loss in whole-
program JavaScript static analysis can incur a huge
slowdown as a result of dynamic property access.

Problem

 We augment a whole-program
dataflow analysis (TAJSVR) with a value refiner (VRJS): a
very precise and targeted analysis that non-monotonically
refines the base analysis abstract state on the fly, increasing
precision at crucial locations like the write to lib[p] above.

Queries are issued based on semantic heuristics in TAJSVR,
so value refinement provides precision where it’s needed and
doesn’t incur additional cost elsewhere, unlike existing
techniques that rely on brittle syntactic patterns.

Our Approach

 Value refinement answers
queries of the form “which values can this memory location
hold at this abstract state?”, providing relational precision to
a non-relational underlying analysis.
Our value refiner VRJS is a separation logic-based backwards  
abstract interpreter that soundly over-approximates possible
dataflow to a queried location.

The analysis is defined in terms of refutation-sound triples
of the form that hold if any concrete run through s
that ends in must have started in , over-approximating the
backwards semantics.

⟨φ⟩ s ⟨φ′�⟩
φ′� φ

Refinement Analysis

 We evaluate the demand-driven value refinement technique by implementing a JavaScript
type analysis TAJSVR and comparing it against two state-of-the-art JS analysis tools:
Evaluation

// library code
var src = {
 foo: function f1(){…},
 bar: function f2(){…} };
var lib = {};
for (var p in src)
 { lib[p] = src[p]; }
// client code
lib.foo();

Inverse of standard
consequence rule!Accumulate path conditions

on backwards search

Transfer postcondition
constraints on l-val to pre-

condition constraints on r-val

Type Analyzer for
JavaScript

(without value
refinement)

Extension to SAFE that
targets dynamic property

access with syntactic patterns

Our tool: TAJS
with demand-
driven value
refinement

{
{
{

Low overhead on programs that are
analyzable without value refinement

Enables analysis of large
examples from previous

works’ test corpora

Imprecise handling
of dynamic object
manipulation…

… leads to spurious
call edges — analysis

can’t resolve the
target of this call!

Analyze full test suites of popular
libraries — both of which were

out of the reach of state-of-the-art
JavaScript analyzers

This work was supported by: ERC#647544, NSF CCF-1619282 & CCF-1055066, and DARPA FA8750-14-2-0263

