
Goal-Directed Backwards Static Analysis for JavaScript
Extended Abstract

Benno Stein

University of Colorado Boulder

benno.stein@colorado.edu

Abstract
JavaScript is notoriously difficult to analyze due to its ram-
pant use of standard dynamic features (e.g. duck typing,
dynamic dispatch, first-class functions, and run-time string
evaluation), as well as its idiosyncratic approach to scop-
ing (scope object chains) and inheritance (prototyping).
Therefore, despite its near-universal adoption as a client-side
scripting language and its increasing use in server-side and
mobile applications, JavaScript is rarely analyzed in practice
and can be quite buggy, unreliable, and unsafe.

We present a novel technique to improve precision and ef-
ficiency of JavaScript analysis by combining a standard for-
wards abstract interpretation with a goal-directed backwards
symbolic execution. The backwards analysis can operate ei-
ther as a standalone tool to refute false alarms that arise from
over-approximation in the forwards analysis, or on-line, re-
futing spurious data-flow on demand at critical points during
the forwards analysis.

General Terms Languages, Algorithms, Verification

Keywords JavaScript, abstract interpretation, program anal-
ysis

1. Background and Related Work
Two largely distinct research areas make up the related work
and relevant background for our research: JavaScript static
analysis and backwards abstract interpretation. This work
seeks to leverage the latter to improve the former.

1.1 JavaScript Analysis

Static analysis for dynamic languages, and JavaScript in par-
ticular, has been the focus of much recent research. Nonethe-
less, there are significant limitations to the currently known
approaches.

Abstract interpreters such as TAJS[6] and JSAI[7] are the
most comprehensive and ambitious published analyses for
JavaScript. Though they are quite similar in many regards,

they differ somewhat in their goals: TAJS specializes heav-
ily in type analysis, trading generality and modularity for
efficiency and precision, while JSAI presents a more general
approach, sacrificing some degree of performance for a for-
mal specification and far greater extensibility. Both systems,
though, are unable to provide adequate precision to handle
the rampant dynamic property accesses of some idiomatic
JavaScript library code and can time out on popular open
source libraries[1].

The IBM T.J. Watson Libraries for Analysis (WALA) pro-
vide a JavaScript front-end to compute points-to informa-
tion and call graphs, as well as numerous analysis utilities
and data structures. However, WALA faces serious scala-
bility issues: the pointer analysis and call-graph construc-
tion are prohibitively expensive for programs that import
any relatively recent version of jQuery, a hugely popular
JavaScript library for front-end web development and DOM
manipulation[8]. An earlier version of the backwards anal-
ysis tool described in this abstract was implemented over
WALA’s intermediate representation.

1.2 Backwards Analysis

The techniques we use for backwards analysis and query
refutation are inspired by those developed by Blackshear
et al. for analyzing heap reachability and Android memory
leaks in the tools Thresher and Hopper[2–4]. Blackshear’s
tools, using a pointer analysis and callgraph generated up-
front by WALA, attempt to refute false alarms by soundly
exploring the state-space backwards from a given alarm site
and bug condition. If all possible backwards paths lead to a
contradiction, the alarm is refuted; if some path reaches an
entry point without contradiction, the alarm is witnessed and
confirmed to be legitimate.

2. Approach and Uniqueness
We present TAJS-Thresher: a tool that combines a forwards
data-flow analysis(TAJS) with a backwards refutation anal-
ysis (à la Thresher). The tool operates in two modes: batch

1 2016/3/22



mode, in which TAJS executes without input from Thresher,
which then soundly refutes as many of the resulting alarms
as possible, and interactive mode, in which TAJS makes
queries to Thresher on-demand during the forwards analy-
sis in order to improve precision at key points.

The challenges of designing a backwards query refutation
engine for JavaScript are largely distinct from those encoun-
tered in a statically typed language like Java, which Blacks-
hear targets with Thresher [3] and Hopper [4].

This is especially true with respect to the JavaScript heap.
Handling property reads and writes precisely is extremely
difficult in a backwards abstract interpretation, since the
prototype semantics of a property read depend not only
upon statically available class hierarchy information, as in
Java, but also flow-sensitively upon the possible prototype
relationships and object values at a particular program point.
To address this, we design an assertion language that extends
a standard field-split separation logic with novel constraints
on the structure of the prototype chain, at a higher level of
abstraction than the predicates proposed by Gardner et al.[5].

Furthermore, while it is a relatively straightforward task
to compute a call graph for a Java program, to do so effi-
ciently, soundly, and precisely for JavaScript remains a dif-
ficult problem because of the megamorphic call-sites that
arise from imprecision with respect to dynamic dispatch. As
a result, the backwards analysis of TAJS-Thresher relies on
TAJS’ approximated call graph, causing it to lose some de-
gree of precision as a result of potentially spurious control-
flow.

3. Results and Contributions
The primary contribution of our work will be a theoretical
framework for extending a standard forwards data-flow anal-
ysis with a sound abstraction refinement mechanism. Our
hope is that this system for reducing spurious data-flow by
refining abstract state at pivotal locations will prove to be an
effective technique for all sorts of abstract interpretations,
not only for dynamic languages like JavaScript.

We will also present TAJS-Thresher, an instantiation of
this framework for JavaScript type analysis, wherein TAJS

will use a Thresher-style backwards query refutation mech-
anism to refine its abstract state at particularly problematic
program points: megamorphic call sites and severely type-
overloaded abstract values, for example. An implementation
of TAJS-Thresher is well under way, but not yet complete.

In this abstract, I have described our system in its entirety,
but my contributions are only to certain elements of it. I ex-
tended our Thresher formalism to handle JavaScript’s dy-
namic features and implemented and tested said formalism

in an earlier prototype that operated over WALA IR rather
than TAJS flowgraphs. I am also responsible for building the
backwards query refutation component of TAJS-Thresher,
while the research group that created TAJS is handling the
necessary modifications to their system. We are working
collaboratively on designing a succinct and efficient API
between the forwards and backwards components, and the
TAJS group is taking the lead on formally specifying the al-
gorithms needed to soundly incorporate a refinement system
into the forwards data-flow analysis.

References
[1] E. Andreasen and A. Møller. Determinancy in Static Analysis

for jQuery. In OOPSLA, 2014.

[2] S. Blackshear. Flexible Goal-Directed Abstraction. PhD thesis,
University of Colorado Boulder, 2015.

[3] S. Blackshear, B.-Y. E. Chang, and M. Sridharan. Thresher:
Precise refutations for heap reachability. In PLDI, 2013.

[4] S. Blackshear, B.-Y. E. Chang, and M. Sridharan. Selective
Control-Flow Abstraction via Jumping. In OOPSLA, 2015.

[5] P. Gardner, S. Maffeis, and G. Smith. Towards a Program Logic
for JavaScript. In POPL, 2012.

[6] S.H. Jensen, A. Møller, and P. Thiemann. Type Analysis for
JavaScript. In SAS, 2009.

[7] V. Kashyap, K. Dewey, E. A. Kuefner, J. Wagner, K. Gibbons,
J. Sarracino, B. Wiedermann, and B. Hardekopf. JSAI: A Static
Analysis Platform for JavaScript. In FSE, 2014.

[8] M. Sridharan, J. Dolby, S. Chandra, M. Schäfer, and F. Tip.
Correlation Tracking for Points-To Analysis of JavaScript. In
ECOOP, 2012.

2 2016/3/22


